

PROGRAMA DE ASIGNATURA

Nombre del curso	FUNDAMENTOS DE ROBÓTICA INDUSTRIAL
Programa	Magíster en Ciencias de la Ingeniería, mención Ingeniería Eléctrica
Código	Por definir Nivel 1 o 2 Tipo Electiva T-E-L 4-0-2 Créditos SCT-Chile 5
Descripción del curso	Proporcionar a los estudiantes los conocimientos fundamentales sobre el diseño, modelado y control de robots industriales, integrando conceptos de cinemática, dinámica, planificación de trayectorias y técnicas de control, con un enfoque en su aplicación práctica en la Ingeniería Eléctrica y considerando criterios de sostenibilidad y eficiencia. Objetivo General:
	Analizar, diseñar y aplicar los fundamentos de la robótica industrial, integrando principios de cinemática, dinámica, planificación de trayectorias y control, para resolver problemas avanzados en el ámbito de la Ingeniería Eléctrica con un enfoque en sostenibilidad y optimización de recursos. Objetivos Específicos: Analizar el impacto y las aplicaciones de los robots industriales en contextos tecnológicos,
Objetivos	 económicos y sociales, considerando su evolución y sostenibilidad. Clasificar las características técnicas y arquitecturas de los robots industriales, identificando sus usos en aplicaciones globales. Modelar la cinemática de manipuladores utilizando herramientas matemáticas avanzadas, con énfasis en eficiencia energética.
	 Calcular la dinámica de robots industriales mediante formulaciones matemáticas, evaluando su comportamiento y eficacia. Diseñar estrategias de planificación y generación de trayectorias para optimizar el desempeño de robots industriales. Implementar técnicas de control avanzadas para mejorar la precisión y eficiencia de robots industriales en entornos complejos.
	 Unidad 1: Introducción General y Conceptos Básicos Antecedentes generales. Objetivos de la robótica industrial. Desarrollo histórico y evolución de la robótica. Impacto actual y futuro de los robots industriales.
Contenidos (Unidades y Lista de Contenidos temáticos)	 Unidad 2: Descripción Técnica de Robots Industriales Arquitectura de los robots. Estructura de los robots. Principales características de los robots Industriales. Descripción técnica de robots industriales. Aplicaciones de robots industriales utilizados a nivel mundial. Unidad 3: Cinemática de Manipuladores Herramientas Matemáticas. Modelación cinemática del brazo del manipulador.
	Unidad 4: Dinámica de Manipuladores ● Definiciones básicas.

PROGRAMA DE ASIGNATURA

- Dinámica directa.
- Formulación de Newton-Euler para las ecuaciones de movimiento.
- Formulación de Lagrange-Euler para las ecuaciones de movimiento.
- Dinámica inversa.

Unidad 5: Planificación y Generación de Trayectorias

- Planificación de trayectorias.
- Generación de trayectorias.

Unidad 6: Control de Robots Industriales

- Control PID.
- Técnica del Par Calculado.
- Modelo de Referencia Adaptivo.
- Control de Estructura Variable.
- Control de Fuerza.

Resultado de Aprendizaje General:

Diseñar sistemas basados en robots industriales, aplicando conceptos fundamentales de cinemática, dinámica, planificación de trayectorias y técnicas de control, evaluando su rendimiento y considerando criterios de sostenibilidad y su impacto en el entorno tecnológico, económico y social.

Resultados de Aprendizaje Específicos:

1. Analizar de manera crítica el impacto actual y futuro de los robots industriales en la sociedad y en la economía, considerando sus antecedentes generales, los objetivos de la robótica industrial y su desarrollo histórico, con énfasis en las implicaciones de sostenibilidad.

Resultados de aprendizajes esperados

- Clasificar correctamente los sistemas robotizados de acuerdo a sus morfologías y características técnicas para identificar contextos de aplicaciones industriales a nivel global y evaluando su impacto ambiental y social.
- 3. Relacionar apropiadamente las ciencias básicas que permitan modelar matemáticamente la cinemática de manipuladores, incluyendo aspectos relacionados con la eficiencia energética.
- 4. Calcular matemáticamente la dinámica de mecanismos robotizados para modelar su comportamiento y evaluar su eficacia en términos de sostenibilidad.
- 5. Diseñar estrategias de planificación y generación de trayectorias para robots industriales, permitiendo el desplazamiento eficiente y preciso de manipuladores en diferentes entornos y aplicaciones, con un enfoque en la optimización de recursos y energía.
- Aplicar técnicas de control para mejorar el rendimiento y la precisión de robots industriales en una variedad de situaciones y tareas, priorizando la eficiencia energética y la reducción de impactos ambientales negativos.

Estrategias Metodológicas

Modalidad de evaluación

Clases expositivas, donde se incentiva la discusión a través de experiencias prácticas y de análisis, tales como: Estudio de Caso, Debates y Foros, Simulaciones, Seminarios y Presentaciones Estudiantiles, Proyectos Colaborativos, Autoevaluación y Reflexión Personal, entre otras.

Evaluación

Las evaluaciones se realizarán por medio de: pruebas escritas, tareas, trabajos de investigación, proyectos y/o exposiciones.

Bibliografía

Básica:

PROGRAMA DE ASIGNATURA

- 1. Barrientos, A. (2007). Fundamentos de Robótica. McGraw Hill. Madrid.
- 2. Klein, K. (2016). Robotics. Createspace Independent Publishing Platform.
- 3. Craig, J. (2006). Robótica. Pearson, Prentice Hall. México.
- 4. Low, K. H. (2007). Industrial Robotics. Programming, Simulation and Applications. Verlag-Robert Mayer-Scholz. Mammendorf.
- 5. Mehta, Axaykumar el al. (2019). Advances in Control Systems and its Infrastructure. Proceedings of ICPCCI 2019. Springer.
- 6. Niku, S. B. (2010). Introduction to robotics: Analysis, control, applications. John Wiley & Sons.
- 7. Pires, J. N. et al. (2006). Welding Robots. Technology System Issues and Applications. Springer-Verlag. Londres.
- 8. Rajput, R. (2008). Robotics and Industrial Automation. S. Chand & Co. Ltd.
- 9. Siciliano, Bruno et al. (2016). Springer Handbook of Robotics. 2da edición. Springer.

Recomendada:

- 1. Spong, M. W., Hutchinson, S., & Vidyasagar, M. (2020). *Robot Modeling and Control*. 2ª edición. Wiley.
- 2. Corke, P. (2017). *Robotics, Vision and Control: Fundamental Algorithms in MATLAB*. 2ª edición. Springer.
- 3. Murray, R. M., Li, Z., & Sastry, S. S. (1994). *A Mathematical Introduction to Robotic Manipulation*. CRC Press.
- 4. Kelly, R., Santibáñez, V., & Loría, A. (2005). Control of Robot Manipulators in Joint Space. Springer.
- 5. Papers.